3.590 \(\int \frac {(a+b \sin ^{-1}(c x))^2}{x^2 \sqrt {d+c d x} \sqrt {e-c e x}} \, dx\)

Optimal. Leaf size=214 \[ -\frac {\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt {c d x+d} \sqrt {e-c e x}}-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {c d x+d} \sqrt {e-c e x}}+\frac {2 b c \sqrt {1-c^2 x^2} \log \left (1-e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{\sqrt {c d x+d} \sqrt {e-c e x}}-\frac {i b^2 c \sqrt {1-c^2 x^2} \text {Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {c d x+d} \sqrt {e-c e x}} \]

[Out]

-(-c^2*x^2+1)*(a+b*arcsin(c*x))^2/x/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)-I*c*(a+b*arcsin(c*x))^2*(-c^2*x^2+1)^(1/2
)/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)+2*b*c*(a+b*arcsin(c*x))*ln(1-(I*c*x+(-c^2*x^2+1)^(1/2))^2)*(-c^2*x^2+1)^(1/
2)/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)-I*b^2*c*polylog(2,(I*c*x+(-c^2*x^2+1)^(1/2))^2)*(-c^2*x^2+1)^(1/2)/(c*d*x+
d)^(1/2)/(-c*e*x+e)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.58, antiderivative size = 214, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4739, 4681, 4625, 3717, 2190, 2279, 2391} \[ -\frac {i b^2 c \sqrt {1-c^2 x^2} \text {PolyLog}\left (2,e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {c d x+d} \sqrt {e-c e x}}-\frac {\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt {c d x+d} \sqrt {e-c e x}}-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {c d x+d} \sqrt {e-c e x}}+\frac {2 b c \sqrt {1-c^2 x^2} \log \left (1-e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{\sqrt {c d x+d} \sqrt {e-c e x}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])^2/(x^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]),x]

[Out]

((-I)*c*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]) - ((1 - c^2*x^2)*(a + b*Arc
Sin[c*x])^2)/(x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]) + (2*b*c*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*Log[1 - E^((2*
I)*ArcSin[c*x])])/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]) - (I*b^2*c*Sqrt[1 - c^2*x^2]*PolyLog[2, E^((2*I)*ArcSin[c*
x])])/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x])

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3717

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[(I*(c + d*x)^(m + 1))/(d*
(m + 1)), x] - Dist[2*I, Int[((c + d*x)^m*E^(2*I*k*Pi)*E^(2*I*(e + f*x)))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x)))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 4625

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n/Tan[x], x], x, ArcSin[c*
x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 4681

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(d*f*(m + 1)), x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x
^2)^FracPart[p])/(f*(m + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSi
n[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p
 + 3, 0] && NeQ[m, -1]

Rule 4739

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((h_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(
q_), x_Symbol] :> Dist[((-((d^2*g)/e))^IntPart[q]*(d + e*x)^FracPart[q]*(f + g*x)^FracPart[q])/(1 - c^2*x^2)^F
racPart[q], Int[(h*x)^m*(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d,
e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{x^2 \sqrt {d+c d x} \sqrt {e-c e x}} \, dx &=\frac {\sqrt {1-c^2 x^2} \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{x^2 \sqrt {1-c^2 x^2}} \, dx}{\sqrt {d+c d x} \sqrt {e-c e x}}\\ &=-\frac {\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {\left (2 b c \sqrt {1-c^2 x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{x} \, dx}{\sqrt {d+c d x} \sqrt {e-c e x}}\\ &=-\frac {\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {\left (2 b c \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int (a+b x) \cot (x) \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {d+c d x} \sqrt {e-c e x}}\\ &=-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d+c d x} \sqrt {e-c e x}}-\frac {\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt {d+c d x} \sqrt {e-c e x}}-\frac {\left (4 i b c \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{2 i x} (a+b x)}{1-e^{2 i x}} \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {d+c d x} \sqrt {e-c e x}}\\ &=-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d+c d x} \sqrt {e-c e x}}-\frac {\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {2 b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d+c d x} \sqrt {e-c e x}}-\frac {\left (2 b^2 c \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \log \left (1-e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {d+c d x} \sqrt {e-c e x}}\\ &=-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d+c d x} \sqrt {e-c e x}}-\frac {\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {2 b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d+c d x} \sqrt {e-c e x}}+\frac {\left (i b^2 c \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d+c d x} \sqrt {e-c e x}}\\ &=-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d+c d x} \sqrt {e-c e x}}-\frac {\left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )^2}{x \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {2 b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d+c d x} \sqrt {e-c e x}}-\frac {i b^2 c \sqrt {1-c^2 x^2} \text {Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d+c d x} \sqrt {e-c e x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.18, size = 189, normalized size = 0.88 \[ \frac {a \left (a c^2 x^2-a+2 b c x \sqrt {1-c^2 x^2} \log (c x)\right )+2 b \sin ^{-1}(c x) \left (a c^2 x^2-a+b c x \sqrt {1-c^2 x^2} \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )\right )-i b^2 c x \sqrt {1-c^2 x^2} \text {Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )+b^2 \left (c^2 x^2-i c x \sqrt {1-c^2 x^2}-1\right ) \sin ^{-1}(c x)^2}{x \sqrt {c d x+d} \sqrt {e-c e x}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSin[c*x])^2/(x^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]),x]

[Out]

(b^2*(-1 + c^2*x^2 - I*c*x*Sqrt[1 - c^2*x^2])*ArcSin[c*x]^2 + 2*b*ArcSin[c*x]*(-a + a*c^2*x^2 + b*c*x*Sqrt[1 -
 c^2*x^2]*Log[1 - E^((2*I)*ArcSin[c*x])]) + a*(-a + a*c^2*x^2 + 2*b*c*x*Sqrt[1 - c^2*x^2]*Log[c*x]) - I*b^2*c*
x*Sqrt[1 - c^2*x^2]*PolyLog[2, E^((2*I)*ArcSin[c*x])])/(x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])

________________________________________________________________________________________

fricas [F]  time = 0.66, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (b^{2} \arcsin \left (c x\right )^{2} + 2 \, a b \arcsin \left (c x\right ) + a^{2}\right )} \sqrt {c d x + d} \sqrt {-c e x + e}}{c^{2} d e x^{4} - d e x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x, algorithm="fricas")

[Out]

integral(-(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2)*sqrt(c*d*x + d)*sqrt(-c*e*x + e)/(c^2*d*e*x^4 - d*e*x^
2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt {c d x + d} \sqrt {-c e x + e} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^2/(sqrt(c*d*x + d)*sqrt(-c*e*x + e)*x^2), x)

________________________________________________________________________________________

maple [F]  time = 1.29, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +b \arcsin \left (c x \right )\right )^{2}}{x^{2} \sqrt {c d x +d}\, \sqrt {-c e x +e}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x))^2/x^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x)

[Out]

int((a+b*arcsin(c*x))^2/x^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {{\left (\frac {\left (-1\right )^{-2 \, c^{2} d e x^{2} + 2 \, d e} d e \log \left (-2 \, c^{2} d e + \frac {2 \, d e}{x^{2}}\right )}{\sqrt {d e}} + d e \sqrt {\frac {1}{d e}} \log \left (x^{2} - \frac {1}{c^{2}}\right )\right )} a b c}{d e} + \frac {-\frac {\frac {1}{4} \, {\left (7 \, \sqrt {c x + 1} \sqrt {-c x + 1} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )^{2} + 4 \, x \int \frac {9 \, \sqrt {c x + 1} \sqrt {-c x + 1} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )^{2} - 14 \, {\left (c^{3} x^{3} - c x\right )} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )}{4 \, {\left (c^{2} x^{4} - x^{2}\right )}}\,{d x}\right )} b^{2}}{4 \, x}}{\sqrt {d} \sqrt {e}} - \frac {2 \, \sqrt {-c^{2} d e x^{2} + d e} a b \arcsin \left (c x\right )}{d e x} - \frac {\sqrt {-c^{2} d e x^{2} + d e} a^{2}}{d e x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x, algorithm="maxima")

[Out]

-((-1)^(-2*c^2*d*e*x^2 + 2*d*e)*d*e*log(-2*c^2*d*e + 2*d*e/x^2)/sqrt(d*e) + d*e*sqrt(1/(d*e))*log(x^2 - 1/c^2)
)*a*b*c/(d*e) + b^2*integrate(arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))^2/(sqrt(c*x + 1)*sqrt(-c*x + 1)*x^2),
 x)/(sqrt(d)*sqrt(e)) - 2*sqrt(-c^2*d*e*x^2 + d*e)*a*b*arcsin(c*x)/(d*e*x) - sqrt(-c^2*d*e*x^2 + d*e)*a^2/(d*e
*x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{x^2\,\sqrt {d+c\,d\,x}\,\sqrt {e-c\,e\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))^2/(x^2*(d + c*d*x)^(1/2)*(e - c*e*x)^(1/2)),x)

[Out]

int((a + b*asin(c*x))^2/(x^2*(d + c*d*x)^(1/2)*(e - c*e*x)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{x^{2} \sqrt {d \left (c x + 1\right )} \sqrt {- e \left (c x - 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x))**2/x**2/(c*d*x+d)**(1/2)/(-c*e*x+e)**(1/2),x)

[Out]

Integral((a + b*asin(c*x))**2/(x**2*sqrt(d*(c*x + 1))*sqrt(-e*(c*x - 1))), x)

________________________________________________________________________________________